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Abstract

The author presents some applications of the fractal geometry in the kinetics of heterogeneous de-

composition of solids.
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Introduction

Following our earlier research, this note deals with the fractal approach for three

cases of heterogeneous solid-gas decompositions described by nucleation-growth

phenomena.

Many steps nucleation with normal growth of nuclei

As shown in literature as well as in our previous note [1] for heterogeneous decompo-

sitions in solid-gas systems described by nucleation-growth, the classical theory pre-

dicts integer values for n in the integral kinetic equation [1–4]:

α =kt n

One of the reasons for the experimentally found fractionary values of n was con-

sidered the slower growth of small nuclei with respect to the larger (normal) ones [2].

Taking into account this hypothesis and combining it with the idea, according to

which the nuclei exhibit a fractal character [1, 5], the total volume of the nuclei be-

longing to the new phase (product B(s)) generated in the reaction

A B +C(S) (S) (g)→ (I)

is given by the sum:
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where σD is the so called fractal shape factor [4], β is the number of steps necessary to

form a stable nucleus, γ is a constant in the nucleation integral kinetic equation:

N t=γ β
(2)

N – being the number of the nuclei belonging to the reaction product generated

at the time t and D is the fractal dimension of the nucleus 1<D<3. As far as k2 and ′k 2

are concerned they represent the growth rates for small and normal nuclei respec-

tively. Other notations in relationship (1) have meanings, which result from Fig. 1 [2]

and the obvious relationships:

r= ′k 2 (t–y) for y<t<y+t′

r=k2(t– y′) for t>y+t′ (3)

where r is the radius of the nucleus. Taking into account that in the relationship
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k
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′k 2 >k2, it follows the

y y t′− ≅ ′ (5)

Under such conditions relationship (1) takes the form:
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Fig. 1 Classical hypothetical time dependence of the radius of the nucleus [2]
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where B(p, q) is the function of Euler of the first kind or
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Relationship (8) is more versatile than the non-fractal one

α = − ′k t t( ) n (9)

with integers values of n. The versatility is mainly due to the non-integer values of

β+D=n* as well as to its second term. Taking into account that ′k 2 <k2 relationship (8)

can be reduced to its first term which in terms of the conversion degree (V(t)α) to:

α = − ′k t t* *( ) n (10)

where the exponent n* can take fractional values too. As shown in literature [2] the in-

teger values of n change within the range 3–8. Moreover Thomas and Tompkins de-

termined the time t′ as the time necessary to substract from t in order to confer to the

slope of the straight line lnp, lnt (p being the pressure of the volatile component of the

reaction I evolved at the moment t which is also directly proportional to α) exactly the

value 6 [6]. Or, experience shows that n can take fractional values thus Eq. (10) as a

particular form of Eq. (8) describes properly the heterogeneous decompositions in the

framework of Eq. (I). This statement is confirmed by the values of n within the range

3.5–5 which have been found for the decomposition of fresh powders of silver

oxalate and within the range 3.2–3.5 for the decomposition of the aged ones.

Branched nuclei which do not interact

In this case the rate of nucleation is given by the following equation:

d

d

N

t
k N k N= +1 3 (11)

where k1 is the coefficient of one step nucleation and k3 the branching coefficient. The

integration of Eq. (11) leads to:

N
k N

k
= −1 0

3

1( )e
k t3 (12)

and correspondingly
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As the nuclei are not topologically unidimensional but exhibit fractal properties

it follows that the fractal length of a nucleus which began to grow at the moment y is

given by

1 2F

D( , ) ( )t y k t y= − (14)

where the fractal dimension is close to unity but slightly higher (D>1). The total

length Lf(t) of the new phase generated at the moment t should then be calculated as

follows.

L t k k N t y yf

t
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e d3( ) ( )= −∫1 2 0

0
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Due to the fractionary value of D in order to operate the integral one has to use

development in series (see appendix). Under such conditions after integration Eq.

(15) turns into:
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Taking into account that Lf(t) is directly proportional to α(t), the kinetic equation

which corresponds to the considered case is
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This equation is more versatile than the corresponding non-fractal one

α =Ce
k t3 (18)

which has been proved to be valid only for limited portions of the (α, t) curve (until

α=0.5) for the decomposition of lead stiphnate [9])

Random nucleation with normal growth

For the exponential nucleation law

d

d
e

–k t1
N

t
k N= 1 (19)

and the fractal growth law

v t y k t y( , ) ( )= −σD

D D

2 (20)

according to the general formula for the volume V(t) of the product of reaction (I):
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it turns out that
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Taking into account the fractional value of D and thus the impossibility to solve

exactly the integral in (22), a fair good approximation is obtained using a develop-

ment in series as shown in the appendix. Under such conditions Eq. (22) turns into:
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or as V(t) ∝ α(t)
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This integral kinetic law can be compared with the corresponding non-fractal

one for the investigated case of heterogeneous decompositions.
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Both equations, for small values of k1t lead to the sample kinetic equation

α=const. tn with fractional [4] or particularly integer values of n as in the case of am-

monium chromate decomposition for which n=4 [10].

Conclusions

Grounded on the treatment of nuclei as fractal particles three models for the kinetics

of the heterogeneous solid-gas decompositions have been presented. The models are

more general and versatile than the classical non-fractal ones.

* * *

The author expresses his thanks to Mr. A. Dobrescu for the fruitful discussions.

Appendix

The integral

( )
0

t
k y

e di∫ −t y yλ 1<λ<3
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The integral

( )
0

t
k y

e di∫ −t y y

can be calculated in the same way by substituting ki→–kj in (A5)
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