FRACTAL APPROACH IN THE KINETICS OF SOLID-GAS DECOMPOSITIONS

 PART II

 PART II}

E. Segal
Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bulevardul Eliszbeta 4-12, Romania

(Received May 5, 1999; in revised form August 10, 1999)

Abstract

The author presents some applications of the fractal geometry in the kinetics of heterogeneous decomposition of solids.

Keywords: kinetics, nucleation-growth

Introduction

Following our earlier research, this note deals with the fractal approach for three cases of heterogeneous solid-gas decompositions described by nucleation-growth phenomena.

Many steps nucleation with normal growth of nuclei

As shown in literature as well as in our previous note [1] for heterogeneous decompositions in solid-gas systems described by nucleation-growth, the classical theory predicts integer values for n in the integral kinetic equation [1-4]:

$$
\alpha=k t^{\mathrm{n}}
$$

One of the reasons for the experimentally found fractionary values of n was considered the slower growth of small nuclei with respect to the larger (normal) ones [2]. Taking into account this hypothesis and combining it with the idea, according to which the nuclei exhibit a fractal character [1,5], the total volume of the nuclei belonging to the new phase (product $\mathrm{B}_{(\mathrm{s})}$) generated in the reaction

$$
\begin{equation*}
\mathrm{A}_{(\mathrm{s})} \rightarrow \mathrm{B}_{(\mathrm{s})}+\mathrm{C}_{(\mathrm{g})} \tag{I}
\end{equation*}
$$

is given by the sum:

$$
\begin{equation*}
V(t)=\sigma_{\mathrm{D}} \beta \gamma \int_{0}^{\mathrm{t}-\mathrm{t}^{\prime}}\left[k_{2}^{\prime}(t-y)\right]^{\mathrm{D}} y^{\beta-1} \mathrm{~d} y-\sigma_{0} \beta \gamma \int_{\mathrm{t}-\mathrm{t}^{\prime}}^{\mathrm{t}}\left[k_{2}^{\prime}(t-y)\right]^{\mathrm{D}} y^{\beta-1} \mathrm{~d} y \tag{1}
\end{equation*}
$$

where σ_{D} is the so called fractal shape factor [4], β is the number of steps necessary to form a stable nucleus, γ is a constant in the nucleation integral kinetic equation:

$$
\begin{equation*}
N=\gamma t^{\beta} \tag{2}
\end{equation*}
$$

Fig. 1 Classical hypothetical time dependence of the radius of the nucleus [2]
N - being the number of the nuclei belonging to the reaction product generated at the time t and D is the fractal dimension of the nucleus $1<\mathrm{D}<3$. As far as k_{2} and k_{2}^{\prime} are concerned they represent the growth rates for small and normal nuclei respectively. Other notations in relationship (1) have meanings, which result from Fig. 1 [2] and the obvious relationships:

$$
\begin{gather*}
r=k_{2}^{\prime}(t-y) \text { for } y<t<y+t^{\prime} \\
r=k_{2}\left(t-y^{\prime}\right) \text { for } t>y+t^{\prime} \tag{3}
\end{gather*}
$$

where r is the radius of the nucleus. Taking into account that in the relationship

$$
\begin{equation*}
y^{\prime}-y=t^{\prime}-\frac{k_{2}^{\prime} t}{k_{2}} \tag{4}
\end{equation*}
$$

$k_{2}^{\prime}>k_{2}$, it follows the

$$
\begin{equation*}
y^{\prime}-y \cong t^{\prime} \tag{5}
\end{equation*}
$$

Under such conditions relationship (1) takes the form:

$$
\begin{gather*}
V(t)=\sigma_{\mathrm{D}} \beta \gamma \int_{0}^{\mathrm{t}-\mathrm{t}^{\prime}}\left(k_{2}\left[\left(t-t^{\prime}\right)-y\right]\right)^{\mathrm{D}} y^{\beta-1} \mathrm{~d} y+ \\
+\sigma_{\mathrm{D}} \beta \gamma \int_{0}^{\mathrm{t}}\left[k_{2}(t-y)\right]^{\mathrm{D}} y^{\beta-1} \mathrm{~d} y-\sigma_{\mathrm{D}} \beta \gamma \int_{0}^{\mathrm{t}-\mathrm{t}^{\prime}}\left[k_{2}^{\prime}(t-y)\right]^{\mathrm{D}} y^{\beta-1} \mathrm{~d} y \tag{6}
\end{gather*}
$$

and correspondingly

$$
\begin{equation*}
V(t)=\sigma_{\mathrm{D}} \beta \gamma k_{2}^{\mathrm{D}} B(D+1, \beta)\left(t-t^{\prime}\right)^{\beta+\mathrm{D}}+\sigma_{\mathrm{D}} \beta \gamma \int_{0}^{t^{\prime}}\left[k_{2}^{\prime}(t-y)\right]^{\mathrm{D}} y^{\beta-1} \mathrm{~d} y \tag{7}
\end{equation*}
$$

where $B(p, q)$ is the function of Euler of the first kind or

$$
\begin{gather*}
V(t)=\sigma_{\mathrm{D}} \beta \gamma k_{2}^{\mathrm{D}} B(D+1, \beta)\left(t-t^{\prime}\right)^{\beta+\mathrm{D}}+ \\
+\sigma_{\mathrm{D}} \beta \gamma k_{2}^{\prime \mathrm{D}}\left[\frac{t^{\mathrm{d}} t^{\prime \beta}}{\beta}-\frac{\mathrm{D} \beta}{\beta-1} t^{\mathrm{D}-1} t^{\beta+1}+\frac{D(D-1)}{1.2} \frac{\beta}{\beta+2} t^{\mathrm{D}-2} t^{\beta+2} \pm \ldots\right] \tag{8}
\end{gather*}
$$

Relationship (8) is more versatile than the non-fractal one

$$
\begin{equation*}
\alpha=k\left(t-t^{\prime}\right)^{\mathrm{n}} \tag{9}
\end{equation*}
$$

with integers values of n. The versatility is mainly due to the non-integer values of $\beta+\mathrm{D}=n^{*}$ as well as to its second term. Taking into account that $k_{2}^{\prime}<k_{2}$ relationship (8) can be reduced to its first term which in terms of the conversion degree $(V(t) \alpha)$ to:

$$
\begin{equation*}
\alpha=k^{*}\left(t-t^{\prime}\right)^{\mathrm{n}^{*}} \tag{10}
\end{equation*}
$$

where the exponent n^{*} can take fractional values too. As shown in literature [2] the integer values of n change within the range $3-8$. Moreover Thomas and Tompkins determined the time t^{\prime} as the time necessary to substract from t in order to confer to the slope of the straight line $\ln p, \ln t$ (p being the pressure of the volatile component of the reaction I evolved at the moment t which is also directly proportional to α) exactly the value 6 [6]. Or, experience shows that n can take fractional values thus Eq. (10) as a particular form of Eq. (8) describes properly the heterogeneous decompositions in the framework of Eq. (I). This statement is confirmed by the values of n within the range $3.5-5$ which have been found for the decomposition of fresh powders of silver oxalate and within the range 3.2-3.5 for the decomposition of the aged ones.

Branched nuclei which do not interact

In this case the rate of nucleation is given by the following equation:

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=k_{1} N+k_{3} N \tag{11}
\end{equation*}
$$

where k_{1} is the coefficient of one step nucleation and k_{3} the branching coefficient. The integration of Eq. (11) leads to:

$$
\begin{equation*}
N=\frac{k_{1} N_{0}}{k_{3}}\left(\mathrm{e}^{\mathrm{k}_{3} \mathrm{t}}-1\right) \tag{12}
\end{equation*}
$$

and correspondingly

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=k_{1} N_{0} \mathrm{e}^{\mathrm{k}_{3} \mathrm{t}} \tag{13}
\end{equation*}
$$

As the nuclei are not topologically unidimensional but exhibit fractal properties it follows that the fractal length of a nucleus which began to grow at the moment y is given by

$$
\begin{equation*}
1_{\mathrm{F}}(t, y)=k_{2}(t-y)^{\mathrm{D}} \tag{14}
\end{equation*}
$$

where the fractal dimension is close to unity but slightly higher $(D>1)$. The total length $L_{\mathrm{f}}(t)$ of the new phase generated at the moment t should then be calculated as follows.

$$
\begin{equation*}
L_{\mathrm{f}}(t)=k_{1} k_{2} N_{0} \int_{0}^{\mathrm{t}}(t-y)^{\mathrm{D}} \mathrm{e}^{\mathrm{k}_{3} \mathrm{y}} \mathrm{~d} y \tag{15}
\end{equation*}
$$

Due to the fractionary value of D in order to operate the integral one has to use development in series (see appendix). Under such conditions after integration Eq. (15) turns into:

$$
\begin{equation*}
L(t)=k_{1} k_{2} N \mathrm{e}^{\mathrm{k}_{3}{ }^{\mathrm{t}}} t^{\mathrm{D+1}}\left[\frac{1}{D+1}-\frac{k_{3} t}{1!(D+2)}+\frac{k_{3}^{2} t^{2}}{2!(D+3)} \pm \ldots\right] \tag{16}
\end{equation*}
$$

Taking into account that $L_{\mathrm{f}}(t)$ is directly proportional to $\alpha(t)$, the kinetic equation which corresponds to the considered case is

$$
\begin{equation*}
\alpha(t)=\text { const. } \mathrm{e}^{\mathrm{k}_{3} \mathrm{t}} t^{\mathrm{D}+1}\left[\frac{1}{D+1}-\frac{k_{3} t}{1!(D+2)}+\frac{k_{3}^{2} t}{2!(D+3)} \pm \ldots\right] \tag{17}
\end{equation*}
$$

This equation is more versatile than the corresponding non-fractal one

$$
\begin{equation*}
\alpha=C \mathrm{e}^{\mathrm{k}_{3} \mathrm{t}} \tag{18}
\end{equation*}
$$

which has been proved to be valid only for limited portions of the (α, t) curve (until $\alpha=0.5$) for the decomposition of lead stiphnate [9])

Random nucleation with normal growth

For the exponential nucleation law

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=k_{1} N \mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}} \tag{19}
\end{equation*}
$$

and the fractal growth law

$$
\begin{equation*}
v(t, y)=\sigma_{\mathrm{D}} k_{2}^{\mathrm{D}}(t-y)^{\mathrm{D}} \tag{20}
\end{equation*}
$$

according to the general formula for the volume $V(t)$ of the product of reaction (I):

$$
\begin{equation*}
V(t)=\int_{0}^{\mathrm{t}} v(t, y)\left(\frac{\mathrm{d} N}{\mathrm{~d} t}\right)_{\mathrm{t}=\mathrm{y}} \mathrm{~d} y \tag{21}
\end{equation*}
$$

it turns out that

$$
\begin{equation*}
V(t)=k_{1} N_{0} \sigma_{\mathrm{D}} k_{2}^{\mathrm{D}} \int_{0}^{\mathrm{t}} \mathrm{e}^{-\mathrm{k}_{1} \mathrm{y}}(t-y)^{\mathrm{D}} \mathrm{~d} y \tag{22}
\end{equation*}
$$

Taking into account the fractional value of D and thus the impossibility to solve exactly the integral in (22), a fair good approximation is obtained using a development in series as shown in the appendix. Under such conditions Eq. (22) turns into:

$$
\begin{equation*}
V(t)=\sigma_{\mathrm{D}} k_{1} N_{0} k_{2}^{\mathrm{D}}\left(\mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}} t^{\mathrm{D}+1}\left[\frac{1}{D+1}+\frac{k_{1} t}{1!(D+2)}+\frac{\left(k_{1} t\right)^{2}}{2!(D+3)}+\frac{\left(k_{1} t\right)^{3}}{3!(D+4)}+\ldots\right]\right) \tag{23}
\end{equation*}
$$

or as $V(t) \propto \alpha(t)$

$$
\begin{equation*}
\alpha(t)=\text { const. } \mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}} t^{\mathrm{D}+1}\left[\frac{1}{D+1}+\frac{k_{1} t}{1!(D+2)}+\frac{\left(k_{1} t\right)^{2}}{2!(D+3)}+\frac{\left(k_{1} t\right)^{3}}{3!(D+4)}+\ldots\right] \tag{24}
\end{equation*}
$$

This integral kinetic law can be compared with the corresponding non-fractal one for the investigated case of heterogeneous decompositions.

$$
\begin{equation*}
\alpha(t)=\text { const. }\left[\mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}}-1+k_{1} t-\frac{\left(k_{1} t\right)^{2}}{21}+\frac{\left(k_{1} t\right)^{3}}{31}\right] \tag{25}
\end{equation*}
$$

Both equations, for small values of $k_{1} t$ lead to the sample kinetic equation $\alpha=$ const. t^{n} with fractional [4] or particularly integer values of n as in the case of ammonium chromate decomposition for which $n=4$ [10].

Conclusions

Grounded on the treatment of nuclei as fractal particles three models for the kinetics of the heterogeneous solid-gas decompositions have been presented. The models are more general and versatile than the classical non-fractal ones.

The author expresses his thanks to Mr. A. Dobrescu for the fruitful discussions.

Appendix

The integral

$$
\int_{0}^{\mathrm{t}}(t-y)^{\lambda} \mathrm{e}^{\mathrm{k}_{\mathrm{i}} \mathrm{y}} \mathrm{~d} y \quad 1<\lambda<3
$$

$$
\begin{gather*}
\int_{0}^{\mathrm{t}}(t-y)^{\lambda} \mathrm{e}^{\mathrm{k}_{\mathrm{i}} \mathrm{y}} \mathrm{~d} y=\int_{0}^{\mathrm{t}}(t-y)^{\lambda} \mathrm{e}^{\lambda\left[\mathrm{k}_{\mathrm{i}}(\mathrm{y}-\mathrm{t})+\mathrm{k}_{\mathrm{i}} \mathrm{t}\right]} \mathrm{d} y \tag{1}\\
\int_{0}^{\mathrm{t}}(t-y)^{\lambda} \mathrm{e}^{\left[\mathrm{r}_{\mathrm{i}}(y-t)+\mathrm{k}_{\mathrm{i}} \mathrm{t}\right]} \mathrm{d} y=\mathrm{e}^{\mathrm{k}_{\mathrm{i}} \mathrm{t}} \int_{0}^{\mathrm{t}}(t-y)^{\lambda} \mathrm{e}^{-\mathrm{k}_{\mathrm{i}}(\mathrm{t}-\mathrm{y})} \mathrm{d} y \tag{2}\\
\mathrm{e}^{\mathrm{k}_{\mathrm{i}} \mathrm{t}} \int_{0}^{\mathrm{t}}(t-y)^{\lambda} \mathrm{e}^{-\mathrm{k}_{\mathrm{i}}(\mathrm{t}-\mathrm{y})} \mathrm{d} y=\mathrm{e}^{\mathrm{k}_{\mathrm{i}} \mathrm{t}} \int_{0}^{\mathrm{t}}(t-y)^{\lambda}\left[\sum_{\mathrm{k}=0}^{\infty}(-1)^{\mathrm{k}} \frac{k_{\mathrm{i}}^{\mathrm{k}}(t-y)^{\mathrm{k}}}{k!}\right] \mathrm{d} y \tag{3}\\
\mathrm{e}^{\mathrm{k}_{\mathrm{i}} \mathrm{t}} \int_{0}^{\mathrm{t}}(t-y)^{\lambda}\left[\sum_{\mathrm{k}=0}^{\infty}(-1)^{\mathrm{k}} \frac{k_{\mathrm{i}}^{\mathrm{k}}(t-y)^{\mathrm{k}}}{k!}\right] \mathrm{d} y=\mathrm{e}^{\mathrm{k}_{\mathrm{i}} \mathrm{t}} t^{\lambda+1} \sum_{\mathrm{k}=0}^{\infty}(-1)^{\mathrm{k}} \frac{k_{\mathrm{i}}^{\mathrm{k}} t^{\mathrm{k}}}{k!(\lambda+k+1)} \tag{4}
\end{gather*}
$$

Thus

$$
\begin{equation*}
\int_{0}^{\mathrm{t}}(t-g)^{\lambda} \mathrm{e}^{\mathrm{k}_{\mathrm{i}} \mathrm{y}} \mathrm{~d} y=e^{k_{\mathrm{i}}} t^{\lambda+1} \sum_{\mathrm{k}=0}^{\infty}(-1)^{\mathrm{k}} \frac{k_{\mathrm{i}}^{\mathrm{k}} t^{\mathrm{k}}}{k!(\lambda+k+1)} \tag{5}
\end{equation*}
$$

The integral

$$
\int_{0}^{\mathrm{t}}(t-y) \mathrm{e}^{\mathrm{k}_{\mathrm{i}} \mathrm{y}} \mathrm{~d} y
$$

can be calculated in the same way by substituting $k_{\mathrm{i}} \rightarrow k_{\mathrm{j}}$ in $\left(\mathrm{A}_{5}\right)$

References

1 E. Segal, J. Thermal Anal., 52 (1998) 537.
2 P. Jacobs and F. Tompkins, in 'Chemistry of Solid State' (ed. W. E. Garner) Rutherworths, London 1955, chapter 7.
3 D. A. Young, 'Decomposition of Solide', Pergamon Press, Oxford 1966, p. 22.
4 A. I. Rozovskii, Izdatelstvo Nauka, Moskva, 1989, p. 189.
5 M. Ochiai and R. Ozao, Thermochim. Acta, 198 (1992) 279; 198 (1992) 289; J. Thermal Anal., 40 (1993) 1331.
6 W. Thomas and F. Tompkins, Proc. Roy. Soc. A, 210 (1951) 111.
7 A. F. Benton and G. L. Cunningham, J. Amer. Chem. Soc., 57 (1935) 2227.
8 F. C. Tompkins, Trans. Faraday Soc., 44 (1948) 206.
9 H. R. Hailes, Trans. Faraday Soc., 29 (1933) 544.
10 K. Fischbeck and H. Spingler, Z. Anorg. Chem., 241 (1939) 2063.

